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Abstract. While our understanding of pH dynamics has strongly progressed for open ocean regions, for marginal seas such as 

the East China Sea (ECS) progress has been constrained by limited observations and complex interactions between biological, 

physical, and chemical processes. Seawater pH is a very valuable oceanographic variable but not always measured using high 

quality instrumentation and according to standard practices. In order to predict water column total scale pH (pHT) and enhance 10 

our understanding of the seasonal variability of pHT on the ECS shelf, an artificial neural network (ANN) model was developed 

using 11 cruise datasets from 2013 to 2017 with coincident observations of pHT, temperature (T), salinity (S), dissolved oxygen 

(DO), nitrate (N), phosphate (P) and silicate (Si) together with sampling position and time. The reliability of the ANN model 

was evaluated using independent observations from 3 cruises in 2018, and showed a root mean square error accuracy of 0.04. 

A weight analysis of the ANN model variables suggested that DO, S, T were the most important predictor variables. Monthly 15 

water column pHT for the period 2000-2016 was retrieved using T, S, DO, N, P, and Si from the Changjiang Biology Finite-

Volume Coastal Ocean Model (FVCOM).  

1 Introduction 

Atmospheric carbon dioxide (CO2) levels have increased by nearly 46%, from approximately 278 ppm (parts per million) in 

1750 (Ciais et al., 2013) to 405 ppm in 2017 (Le Quéré et al., 2018). The oceans have absorbed approximately 48% of the 20 

anthropogenic CO2 emissions (Sabine et al., 2004), resulting in decreasing long-term pH trends of ~0.02 decade-1 in open 

ocean waters (e.g., Dore et al., 2009; González-Dávila et al., 2010; Bates et al., 2014; Lauvset et al., 2015). While a gradual 

decrease in pH is a predictable open ocean response to elevated anthropogenic CO2 emissions, the seasonal changes and long-

term trends in pH in coastal seas have not been fully understood due to the lack of long-term pH data and complexity of coastal 

systems. In this context, the development of approaches to predict carbonate chemistry parameters in coastal regions may 25 

assist both the management of local water quality and our wider understanding of the ocean carbon cycle.   

 

Many attempts have been made to predict seawater pH by developing empirical relationships between pH and environmental 

variables, such as temperature (T) (Juranek et al., 2011), salinity (S) (Williams et al., 2016), dissolved oxygen (DO) (e.g., 

Juranek et al., 2011; Sauzède et al., 2017), nutrients (e.g., Williams et al., 2016; Carter et al., 2016, 2018), and longitude, 30 

latitude (Sauzède et al., 2017). Compared with traditional empirical methods, artificial neural networks (ANNs) have shown 

improved performance (Chen et al., 2017). ANNs have been proposed as powerful tools for modelling uncertain and complex 

systems such as ecosystems and environmental assessment (e.g., Olden and Jackson, 2002; Olden et al., 2004; Uusitalo, 2007; 

Raitsos et al., 2008). Their main advantage compared with multiple linear regression (MLR) models is that they do not require 

an a priori model but rather “learn” the model from existing data. ANNs have been used for the retrieval of the partial pressure 35 

of carbon dioxide (pCO2) (e.g., Friedrich and Oschlies, 2009; Laruelle et al., 2017), total alkalinity (e.g., Velo et al., 2013; 

Bostock et al., 2013; Sasse et al., 2013), total dissolved inorganic carbon (e.g., Bostock et al., 2013; Sasse et al., 2013), and 

phytoplankton functional types (e.g., Raitsos et al., 2008; Palacz et al., 2013). However, these studies mainly focus on the open 

ocean; relatively few studies have focused on coastal seas, perhaps because of the complexity and heterogeneity of the 
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continental shelves. Alin et al. (2012) developed an MLR model to reconstruct pH in the southern California Current System, 40 

while Moore-Maley et al. (2016) evaluated the interannual variability of near-surface pH using a one dimensional, biophysical, 

mixing layer model in the Strait of Georgia. To our knowledge, no empirical relationship for pH has yet been established for 

the ECS. 

 

The ECS is the largest marginal sea in the western North Pacific Ocean and receives massive terrestrial inputs from the 45 

Changjiang River (Gong et al., 1996). The spatial and temporal distributions of the carbonate system have been investigated 

in the ECS (e.g., Chou et al., 2009; Cao et al., 2011; Qu et al., 2015), and were found to largely reflect the distributions of 

various water masses. The pattern of carbon sources and sinks exhibits substantial seasonal variation (Guo et al., 2015), and 

the ECS is generally considered as a sink of atmospheric CO2 throughout the year except in fall (e.g., Shim et al., 2007; Zhai 

and Dai, 2009). A mechanistic semi-analytical algorithm (MeSAA) was developed to study pCO2 variations in response to 50 

various controlling mechanisms during summertime (Bai et al., 2015). However, the seasonal variability of pH has been very 

little studied in the ECS, mainly due to the limited observational coverage and irregular variability caused by seasonal 

fluctuations of the Changjiang River discharge and anthropogenic processes. Developing methods to extend the seasonal 

coverage of pH data may thus help to improve our understanding of the ocean carbon cycle in the ECS. 

 55 

This paper is structured as follows: section 2 describes the cruise data used to build the ANN model; section 3 shows the ANN 

model performance and predictor variable importance, as well as an application to retrieve monthly pH for the period 2000-

2016 on the ECS shelf using the monthly temperature, salinity, dissolved oxygen, nitrate, phosphate and silicate from the 

Changjiang Biology Finite-Volume Coastal Ocean Model (FVCOM). Conclusions and perspectives are summarized in the last 

section. 60 

2 Data and method 

2.1 Data 

Eleven cruises were conducted on the ECS shelf from 2013 to 2017 (Fig. 1). Ten of these were carried out during the “Fund 

Committee Innovation Group Project” (Y22323101B), the summer cruise from 17 to 28 August 2013, 10 to 17 July 2014, 9 

to 20 July 2015, 4 to 28 July 2016, 20 to 30 July 2017, the winter cruise from 21 to 28 February 2014, 15 to 28 February 2017, 65 

the spring cruise from 4 to 20 March 2013, 11 to 21 March 2015, 7 to 19 March 2016; the remaining cruise was carried out on 

the ECS shelf during 12–24 May 2017. Water samples were collected at three or four different depths during all cruises. 

 

T and S profiles were obtained directly using a conductivity temperature-depth/pressure (CTD) recorders (SBE 25plus or 

911plus). Measurement of DO followed the Winkler procedure, as described previously by Zhai et al. (2014). Nutrients 70 

samples were first filtered with 0.45 μm Whatman GF/F membrane, then stored in 250 mL HDPE bottles until chemical 

analysis. Nitrate (N), phosphate (P) and silicate (Si) were determined using a segmented flow analyzer (Model: Skalar SANPLUS, 

Netherlands) with a precision < 3% (Zhang et al., 2007), the detection limits are 0.14 μM for N, 0.06 μM for P, and 0.07 μM 

for Si.  During the May 2017 survey, pH samples were stored in 500 mL high-quality borosilicate glass bottles without filtering 

and poisoned by addition of 200 μL saturated HgCl2 solution until measured in the lab. The pHT (total scale) was measured 75 

using an Automated Flow-through system for Embedded Spectrophotometry (AFtes) with a precision of 0.0005 pHT unit and 

uncertainty of < 0.003 (Reggiani et al., 2016). During all other cruises, pH samples were stored in 140 mL brown borosilicate 

glass bottles and poisoned by addition of 50 μL saturated HgCl2 solution. Three traceable pH buffers were used including 

NIST (National Institute of Standards and Technology) buffers pH = 4.00, 7.02, 10.09. As described by Zhai et al. (2012, 

2014), we converted it into total scale and the overall accuracy of the pHT data was estimated as 0.01. We omitted data points 80 
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where one or more other physical variables were missing. The final number of data used by the ANN model was 1854, and 

the distribution of the sampling sites from the 11 cruises is shown in Fig. 1. More detailed information on the field survey can 

be found in Table 1. 

2.2 Artificial neural network development  

The ANN we used is a feed-forward multilayer perceptron (Tamura and Tateishi, 1997) with two hidden layers. The neurons 85 

of each layer are connected with the neurons of the previous layer and the next layer by weights (Fig. 2). The coefficients of 

the weight matrix are iteratively tuned in the training step. Here we used the back-propagation conjugate-gradient technique 

(Hornik et al., 1989). In order to avoid overfitting, a ten-fold cross-validation was used to assess model prediction accuracy. 

Here, the cruise data were randomly divided into ten equal subsamples. One subsample was used as the independent validation 

data (10% of all cruise data), which was always excluded from training, and the nine remaining subsamples were together used 90 

as training data (90% of all cruise data). The training data were further divided randomly into a training set (70% of training 

data), validation set (15% of training data), and testing set (15% of training data). The training set was used for computing the 

gradient and updating the network weights and biases. The validation set was used to monitor the error and control model stop 

during the training process. The testing set was used to monitor whether the model was over-matched (Palacz et al., 2013). We 

compared performances in predicting the independent validation data from the ten-fold cross-validation and selected the 95 

optimal model based on the lowest root mean square error (RMSE). In our study, calculations were done in the MathWorks 

Matlab environment, using the Deep Learning Toolbox. 

 

Different combinations of input variables were tested to choose the optimal architecture of the ANN model (Table 2). As 

shown in Fig. 2, input variables include longitude, latitude, month, T, S, DO, N, P and Si. We selected these variables as 100 

principal inputs for the following reasons: the carbonate system thermodynamic relationships depend on T and S (Lueker et 

al., 2000); DO was expected to vary with pH and there was a tight positive link between DO and pH (Wootton et al., 2012) 

because of the role of photosynthesis and respiration in removing or generating CO2 in the water; nutrients influence 

phytoplankton growth and abundance, which might increase organic carbon fixation, increasing inorganic carbon uptake and 

increasing pH (Wootton et al., 2008, 2012). We found geographical information to be a powerful addition in improving the 105 

skill of the method (see Table 2), allowing the network to learn spatio-temporal patterns that could not be explained by other 

input variables (Sasse et al., 2013). The number of neurons in the two hidden layers was tested, varying between 1 and 100 for 

the first hidden layer and between 1 and 50 for the second hidden layer. The optimal architecture was composed of two hidden 

layers with 40 neurons in the first and 16 neurons in the second. 

 110 

In order to avoid bias towards high-value inputs/outputs and to eliminate the dimensional influence of the data, all data used 

by the ANN model were normalized using the following equation (e.g., Sauzède et al., 2015, 2016): 

𝑥𝑖,𝑗 =
2

3
∗
𝑥𝑖,𝑗−𝑚𝑒𝑎𝑛(𝑥𝑖,𝑗)

𝜎(𝑥𝑖,𝑗)
          (1)                                         

with σ the standard deviation of the considered input variables or output variable pHT. Similar to the approach of Sauzède et 

al. (2015, 2016), the longitude and month input variables were transformed as follows to account for the periodicity: 115 

slongitude = sin (
𝐿𝑜𝑛∗𝜋

180
) , clongitude = cos (

𝐿𝑜𝑛∗𝜋

180
)  (2) 

smonth = sin (
𝑚𝑜𝑛𝑡ℎ∗𝜋

6
) , cmonth = cos (

𝑚𝑜𝑛𝑡ℎ∗𝜋

6
)  (3) 

The latitude variable was transformed into the range of the sigmoid function by dividing by 90 (Sauzède et al., 2015), then 

normalized using (1). 
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3 Result and discussion 120 

3.1 The ANN model performance 

To evaluate the performance of the ANN model, we compared model simulated pHT (pHT
M) with corresponding observations 

(pHT
O) using several statistical indices, including the mean absolute error (MAE), the coefficient of determination (R2), and 

the root mean squared error (RMSE). The model simulated pHT with RMSE = 0.04 and R2 = 0.88 for the training data (90% 

of all data, Fig 3a), and predicted pHT with RMSE = 0.03 and R2 = 0.93 for the independent validation data (10% of all data, 125 

Fig 3b). The distributions of the differences (pHT
M - pHT

O) were approximately normal with no obvious outliers (Fig. 4). 

 

In order to further explore where the ANN model may lead to large errors, we plotted distributions of differences (pHT
M - 

pHT
O) with respect to the longitude and latitude (Fig. 5). The points with large errors are mainly concentrated in the longitude 

range [122.5°E, 123°E] and the latitude range [32°N, 32.5°N], in an area strongly influenced by the Changjiang Dilute Water 130 

(CDW). The reduced performance of the ANN model here can be primarily attributed to seasonal oscillations of the Changjiang 

River discharge (Dai and Trenberth, 2002). Although the RMSE for pHT we obtained here was higher than obtained in some 

previous studies (e.g., Juranek et al., 2011; Williams et al., 2016; Sauzède et al., 2017), their research regions were open ocean 

regions, not coastal seas. For example, Juranek et al. (2011) developed empirical algorithms to estimate pH with RMSE of 

0.018 for data between 30-500 m in the NE subarctic Pacific; Williams et al. (2016) also developed empirical algorithms to 135 

predict pH with RMSE of 0.01 in the Southern Ocean; Sauzède et al. (2017) developed a neural network method to estimate 

pH with RMSE of 0.02 in the global ocean. However, coastal seas tend to show greater temporal and spatial variability than 

open oceans. Alin et al. (2012) developed a MLR approach to reconstruct pH with RMSE of 0.024 in the southern California 

Current System. Zhai et al. (2014) compared the field-measured pH with calculated pH from measured total alkalinity and 

dissolved inorganic carbon using the program CO2SYS.xls (Pelletier et al., 2011) and obtained discrepancies with standard 140 

deviation 0.05. Carbon chemistry parameters in this region are not only under the direct impact of Taiwan Warm Current and 

remote control of the Kuroshio water intrusion into the shelf but also significantly controlled by seasonal variations of the 

Changjiang River discharge (e.g., Isobe and Matsuno, 2008; Chen et al., 2008; Chou et al., 2009). Taking into account the 

highly complex hydrographic, biological and chemical conditions, the accuracy of pHT presented is promising. 

3.2 Comparison with new field data 145 

To further assess the ability of the ANN model to estimate pHT on the ECS shelf, we applied the ANN model to data from 

three cruises not used in the ANN model development (Fig. 6): March, July, and October 2018. Scatterplots of retrieved pHT 

vs observations (Fig. 7) show that the ANN model predicts pHT with a RMSE of 0.04 and R2 of 0.8 for these cruise data. This 

result is consistent with the result of the training data (Fig. 3a), which further reflects the stability and reliability of the ANN 

model on the ECS shelf. 150 

3.3 Variable importance in the ANN model 

To assess the relative importance of different environmental input variables in the ANN model, we used the following method: 

for each environmental variable separately, add 5% and calculate the resulting percentage change in the predicted pHT. 

Predicted pHT responded positively to (T, DO) and negatively to S (Fig. 8). The variable with the greatest weight was DO, 

followed by S and T, and the weights of nutrients were relatively small. This is consistent with (Cai et al., 2011) where positive 155 

correlations between pHT and DO in the Gulf of Mexico and ECS were attributed to the processes of photosynthesis (generating 

DO and removing CO2, hence increasing pH) and aerobic respiration (consuming DO and generating CO2, hence lowering 

pH). The negative response to increasing S reflects the influence of the Changjiang River (lower salinity), which carries large 
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amounts of nutrients that fuel increased primary production (uptake of nutrients and CO2, hence raising the pH) in surface 

waters during warm seasons (Gong et al., 2011). 160 

3.4 ANN model application 

In order to retrieve pHT on the ECS shelf, the monthly T, S, DO, N, P and Si from the Changjiang Biology Finite-Volume 

Coastal Ocean Model (FVCOM) (http://47.101.49.44/wms/demo) were applied to the ANN model as input variables. 

Monthly pHT for the period 2000-2016 was obtained at the spatial resolution of the Changjiang Biology FVCOM output: 1-10 

km in the horizontal, 10 depth levels in the vertical, and 12 months. 165 

Considering the discreteness and discontinuity of the sampling sites, we compared retrieved pHT with the corresponding 

observations at some sites with repeated sampling for 3 to 4 years. These sites were A1-5 (123.0140°E, 32.2145°N), A1-6 

(123.2750°E, 32.2679°N), A6-7 (122.9880°E, 30.7050°N), A6-9 (123.4990°E, 30.5723°N), A7-5 (123.4990°E, 30.2523°N), 

and A8-5 (123.4930°E, 29.9940°N). Overall, the retrieved pHT from the Changjiang Biology FVCOM output agrees well with 

the observed values at the surface, except for three samples in summer (Fig. 9). There are relatively large deviations (greater 170 

than the RMSE of 0.04) in August 2013 at station A1-5 and A6-9, and in July 2016 at station A8-5. These may be primarily 

attributed to the sudden increase in the Changjiang River discharge (Dai and Trenberth, 2002). To illustrate the application 

performance in the water column, a scatterplot of retrieved pHT vs observations at six sites with repeated sampling for 3 to 4 

years (Fig. 10) shows that the ANN model predicts pHT with a RMSE of 0.05 and R2 of 0.71.  

We further compared retrieved pHT using the Changjiang Biology FVCOM output with retrieved pHT using measured T, S 175 

and DO, and in situ measured pHT values (Figure 11). The agreement is good here in winter, but large deviations appear in 

summer. The reduced performance in summer can be attributed in large part a reduced performance of the FVCOM model in 

predicting summertime DO and S (see Figure S1); using the observed values of DO, S, etc. as predictor variables, the skill of 

the ANN pHT predictions is much improved (RMSE = 0.09 vs. RMSE = 0.02). 

4 Conclusions and perspectives 180 

We have developed an artificial neural network model, demonstrated its reliability, and used it to retrieve monthly pHT for the 

period 2000-2016 on the East China Sea shelf. This model predicts the water column pHT using nine input components, and 

the three most important environmental input variables were dissolved oxygen, salinity and temperature.  

 

The approach has several potential applications. First, it can provide estimates of seawater pHT with known accuracies for the 185 

East China Sea shelf and the period 2013-2018. Within this region the model could be used as a cost-effective way to handle 

restrictions of marine observations conducted from ships, such as coarse resolution and under-sampling of carbonate system 

variables. Second, while the ANN model is not a replacement for direct measurements of the carbonate system, it may be a 

valuable tool for understanding the seasonal variation of pHT in poorly observed regions. Third, this approach can be applied 

to other regions to predict pH by suitably adapting the input variables and network structure. The MATLAB code used in this 190 

study to develop and apply the ANN model is freely available, and is accompanied by a README file providing detailed 

guidance on how to use and adapt the code. 

Code and data availability 

Matlab code of the ANN model for pHT estimation and datasets are available: 

http://doi.org/10.5281/zenodo.3519219 195 
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The monthly-average input variables (T, S, DO, N, P, Si) from the Changjiang Biology Finite-Volume Coastal Ocean Model 

and retrieved pHT values from 2000 to 2016 on the East China Sea shelf and three cruises data during 2018 used to evaluate 

the ANN model are available: 

http://doi.org/10.5281/zenodo.3519236 

Requests to access the raw data should be directed to Richard Bellerby: Richard.Bellerby@niva.no 200 

Six stations with repeated sampling for 3 to 4 years and corresponding retrieved pH values from the Changjiang Biology 

FVCOM output are available: http://doi.org/10.5281/zenodo.3491747 

Video supplement 

Monthly distribution of surface pHT on the East China Sea shelf from 2000 to 2016 year: 

http://doi.org/10.5281/zenodo.2672943 205 

Profile distribution of pHT at 31°N on the East China Sea shelf from 2000 to 2016 year: 

http://doi.org/10.5281/zenodo.2672929 
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Figure 1: Sampling stations from 11 cruises from 2013 to 2017. 

 

Figure 2: Schematic representation of the neural network algorithm to retrieve pHT. Input variables are observed temperature, 

salinity, dissolved oxygen, nitrate, phosphate, and silicate together with the geolocation (longitude and latitude) and time (month) of 

sampling. 

  

Figure 3: Comparison of pHT retrieved by the ANN model with corresponding observations. (a)-training data (90% of all data); (b)-360 
independent validation data (10% of all data). The 1:1 line is shown in each plot as visual reference. Three statistics are the mean 

absolute error (MAE), the coefficient of determination (R2), and the root mean squared error (RMSE). N represents the number of 

data points. 
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Figure 4: Normal distribution of the differences between pHT estimated by the ANN model minus the observations. (a)-training data 

(90% of all data); (b)-independent validation data (10% of all data). 365 

  

Figure 5: Box plots of the differences between retrieved pHT minus the observations. (a)-the differences vs longitude (Mean±SE); 

(b)-the differences vs latitude (Mean±SE). The height of each box represents the mean value of the differences, the whisker represents 

the standard error (SE) value of the differences. 

 

Figure 6: Sampling stations for three cruises used to extend the utility of the ANN model. The green circles represent March 2018, 

the purple squares represent July 2018, the red triangles represent October 2018. 370 
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Figure 7: Comparison of pHT retrieved by the ANN model with corresponding observations for the three cruises in 2018. The 1:1 

line is shown in the plot as visual reference. Three statistics approaches used are the mean absolute error (MAE), the coefficient of 

determination (R2), and the root mean squared error (RMSE). N represents the number of data points. 

 

Figure 8: Variable importance estimates in the ANN model. 
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Figure 9: Comparison of retrieved pHT with corresponding observations in the sea surface at six sites repeated sampling for 3 to 4 375 
years. Red dots represent observations pHT, blue solid line represents time series pHT retrieved by the ANN model, black dotted line 

represent retrieved pHT ± RMSE. (a)-station A1-5; (b)-station A1-6; (c)-station A6-7; (d)-station A6-9; (e)-station A7-5; (f)-station 

A8-5. 

 

Figure 10: Comparison of retrieved pHT with corresponding observations in the water column at six sites repeated sampling for 3 

to 4 years. The 1:1 line is shown in the plot as a visual reference. Skill statistics include the mean absolute error (MAE), the coefficient 380 
of determination (R2), and the root mean squared error (RMSE). N represents the number of data points. 
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Figure 11: Comparison of monthly average pHT on the East China Sea shelf. Blue solid line represents retrieved pHT using 

Changjiang Biology FVCOM output; black dotted line represents retrieved pHT using Changjiang Biology FVCOM output ±RMSE; 

red points show monthly-average pHT observations from 2013 to 2016; green points show retrieved pHT using in situ observation 385 
data from 2013 to 2016. (a)-surface; (b)-bottom. 

 

Table 1: Field survey information and measurements of water temperature, salinity, dissolved oxygen, nitrate, phosphate, silicate 

and pHT (Mean±SE). 

Sampling period Temperature  

(℃) 

Salinity Dissolved oxygen  

(mmol m-3) 

Nitrate  

(mmol m-3) 

Phosphate  

(mmol m-3) 

Silicate  

(mmol m-3) 

pHT 

March 4th-20th, 2013 11.54±1.34 32.04±2.26 275.28±19.30 12.25±8.25 0.58±0.17 17.54±7.65 8.19±0.04 

August 17th-28th, 2013 23.45±3.17 32.32±2.91 142.22±63.45 12.16±8.05 0.55±0.32 16.47±12.18 8.04±0.18 

February 21th-28th, 2014 9.56±2.38 32.14±1.78 293.07±19.52 11.92±9.17 0.59±0.18 12.52±6.50 8.10±0.04 

July 10th-17th, 2014 21.66±2.13 29.50±5.10 186.44±43.29 21.57±22.10 0.57±0.46 21.45±17.76 8.07±0.11 

March 11th-21th, 2015 11.42±1.44 31.57±2.60 279.72±15.29 22.04±18.88 0.81±0.35 16.48±11.64 8.19±0.03 

July 9th-20th, 2015 22.14±1.55 29.73±4.71 207.32±56.12 19.73±18.62 0.60±0.42 20.87±17.48 8.13±0.09 

March 7th-19th, 2016 10.77±2.02 30.85±2.92 284.00±31.40 20.26±12.80 0.82±0.25 19.17±11.62 8.20±0.05 

July 4th-28th, 2016 23.19±3.19 28.17±6.67 122.90±49.97 25.77±23.60 0.63±0.46 28.56±25.03 8.06±0.16 

February 15th-28th, 2017 11.03±2.57 32.00±2.43 296.21±21.27 12.30±9.13 0.56±0.18 13.09±7.45 8.13±0.05 

May 12th-24th, 2017 17.71±1.54 29.62±2.79 171.58±49.52 12.60±4.83 0.29±0.24 10.95±4.29 8.08±0.13 

July 20th-30th, 2017 24.85±3.41 27.70±6.31 192.11±76.55 20.57±23.23 0.42±0.34 19.28±18.92 8.09±0.18 

 390 

 

Table 2: Different model structures and their performance in the training step. The variables (Lon (longitude), Lat (latitude), Month 

(month), T (temperature), S (salinity), DO (dissolved oxygen), N (nitrate), P (phosphate), Si (silicate)) marked with 1 represent the 

input variables. Skill statistics include the coefficient of determination (R2), the root mean squared error (RMSE), and the mean 

absolute error (MAE). 395 
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Model Lon Lat Month T S DO N P Si Training data Independent 

validation data 

R2 RMSE MAE R2 RMSE MAE 

1      1    0.40 0.092 0.068 0.47 0.076 0.058 

2    1  1    0.62 0.073 0.053 0.62 0.067 0.051 

3    1 1 1    0.69 0.065 0.048 0.72 0.060 0.044 

4    1 1 1 1   0.76 0.057 0.044 0.77 0.052 0.041 

5    1 1 1  1  0.81 0.051 0.040 0.79 0.051 0.040 

6    1 1 1   1 0.77 0.056 0.044 0.79 0.054 0.043 

7    1 1 1 1 1  0.80 0.053 0.042 0.79 0.051 0.041 

8    1 1 1  1 1 0.81 0.051 0.040 0.81 0.049 0.039 

9    1 1 1 1  1 0.76 0.058 0.044 0.77 0.054 0.044 

10    1 1 1 1 1 1 0.83 0.048 0.037 0.86 0.046 0.037 

11   1 1 1 1 1 1  0.85 0.046 0.035 0.87 0.043 0.032 

12   1 1 1 1  1 1 0.85 0.046 0.034 0.85 0.045 0.035 

13   1 1 1 1 1  1 0.82 0.049 0.036 0.84 0.050 0.036 

14   1 1 1 1 1 1 1 0.84 0.046 0.035 0.87 0.045 0.033 

15 1 1 1 1 1 1 1   0.86 0.044 0.033 0.79 0.046 0.034 

16 1 1 1 1 1 1  1  0.87 0.043 0.032 0.87 0.044 0.034 

17 1 1 1 1 1 1   1 0.87 0.043 0.033 0.82 0.045 0.035 

18 1 1 1 1 1 1 1 1  0.88 0.040 0.031 0.88 0.039 0.031 

19 1 1 1 1 1 1  1 1 0.87 0.042 0.032 0.87 0.042 0.033 

20 1 1 1 1 1 1 1  1 0.84 0.046 0.035 0.85 0.047 0.036 

21 1 1 1 1 1 1 1 1 1 0.88 0.040 0.031 0.89 0.036 0.028 
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